Novel Bromination Process slashes PMI

The challenge

CatSci was tasked with designing a new bromination method for a key reaction intermediate. Use of bromine rendered the previous process unsuitable for a larger campaign and would require expensive and time-consuming alterations to the plant.

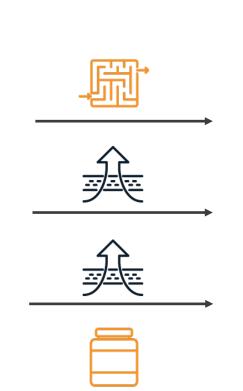
Homs

Leveraging its collective expertise in route design, the CatSci team spotted an opportunity to utilise a little-used amide functionalisation method. This method would simultaneously activate the substrate towards bromination and offer in situ protection of a functionality that could otherwise competitively react.

The achievement

A novel, two-step route to the desired compound was first developed using NBS as the brominating agent. Process development telescoped this into a one-pot procedure. In addition to avoiding use of bromine, the new route also afforded the product in higher yields and was more environmentally sustainable, delivering an impressive 45% drop in CO_2 emissions compared to the original route. The transfer to the manufacturing plant proceeded 'right first time'.

The team: Dr Guy Brenchley, Dr Jo Sampson, Dr Dan Richards & Dr Monica Trues-Suarez


Old Process

Br₂ in 33% HBr/AcOH

Solvent Swap to PhMe

Two crystallisations required for purification

Variable yields and material colour

New Process

NBS in iPrOAc

No Solvent Swap

Crystallisation from reaction solvent

Higher yields and consistent purity

Facts and Figures PMI 52% lower

Water Waste **52%** less

Solvent Waste 23% less

or

140 cars driven for 1 year

This equals...

What does a 45%

659 tonnes CO₂ saved*

5	
6	-0

84 Million Smartphones charged

*per 10 tonnes of key intermediate

